DPP-0216 ## M. A. (Sem. II) (Mathematics) Examination April/May - 2016 Paper: 406: P.D.E. & Fourier Analysis | Time: | Hours] | [Total Marks: 100 | |-------|--------|-------------------| | | | | ## **Instructions:** (1) - (2) There are five questions in this question paper - (3) Answer all questions - (4) Figure to the right indicates marks of the questions - 1 (a) Find the Orthogonal trajectories for the system of curves on a surface f(x, y, z) = 0. 7 - (b) Explain any method to solve the set of equations $\frac{dx}{P} = \frac{dy}{Q} = \frac{dz}{R}$ and Find the integral curves of the set of equations $\frac{dx}{x^2(y^3-z^3)} = \frac{dy}{y^2(z^3-x^3)} = \frac{dz}{z^2(x^3-y^3)}$ - (c) Find the equation of the integral surface of the differential equation $(x^2 yz)p + (y^2 zx)q = (z^2 xy)$ which passes through the line x=1,y=0. - 1 (a) Show that the necessary and sufficient condition that the pfaffian differential equation 7 $x \cdot dr = 0$ should be integrable is that $x \cdot curl \ x = 0$. - (b) Show that the equation xp yq = x, $x^2p + q = xz$ are compatible and find their solution. - (c) Find the complete integral of x(1+y)p = y(1+x)q. - 2 (a) Derive the condition for two differential equations f(x,y,z,p,q)=0 and g(x,y,z,p,q)=0 to be 7 compatible. - (b) Find the solution of $z^2 = pqxy$ by Jacobi's method. - (c) Find the partial differential equation corresponding to the sphere $x^2 + y^2 + (z c)^2 = a^2$ having center (0,0,c) with radius a. 6 6 - 2 (a) If $(\alpha_r D + \beta_r D' + \gamma_r)^n$, $(\alpha_r \neq 0)$ is a factor of F(D, D') and if the function 7 $\emptyset_{r_1}, \emptyset_{r_2}, \ldots, \emptyset_{r_n}$ an arbitrary then $exp\left(- rac{\gamma_{r}x}{\alpha_{r}} ight)\sum_{s=1}^{n}x^{s-1}\,\emptyset_{r_s}\left(eta_{r_x}-lpha_{r_y} ight)$ a solution of - (b) Find the solution of the partial differential equation $\frac{\partial^2 z}{\partial x^2} \frac{\partial^2 z}{\partial y^2} = x y$. 7 - (c) Find the equation of the system of surfaces which cut orthogonally the cones of the system $x^2 + y^2 + z^2 = cxy$. Or 6 7 - (a) State and prove charpit's method. - (b) Find the integral curves of the set of equation (xz y)dx + (yz x)dy + $(1-z^2)dz=0.$ - (c) Determine the equation yzdx + 2xzdy 3xydz = 0 is integrable and find the solution of which exists. Or - (a) Derive the complex Fourier series for the interval [c, c + 2l]. 7 - (b) Find the Fourier series for the function $f(x) = \left(\frac{\pi x}{2}\right)^2$; $0 < x < 2\pi$. 7 - (c) If the Fourier series of f(x) over the interval [-l, l], then derive the Parseval's identity 6 for the given Fourier series in all possible cases. - (A) Derive the Fourier series of a periodic odd function f(x) defined on [-p,p] with period 7 - (b) Find the complex form of Fourier series for the function $f(x) = e^{ax}$, $x \in (-\pi, \pi)$ in the 7 form $e^{ax} = \frac{\sinh a\pi}{\pi} \sum_{n=-\infty}^{\infty} (-1)^n \frac{a+in}{a^2+n^2} e^{inx}$ (c) Expand f(x) = 1 + x, for 0 < x < 1 as half range cosine series. - 6 - (a) 1) Define Orthonormal system. Prove that every orthogonal system of functions is 7 linearly independent system. - (b) Show that 7 - (a) $\mathcal{F}_c\{e^{-ax}\} = \sqrt{\frac{2}{\pi}} \left(\frac{a}{a^2 + k^2}\right)$; a > 0 - (b) $\mathcal{F}_s\{e^{-ax}\} = \sqrt{\frac{2}{\pi}} \left(\frac{k}{a^2 + k^2}\right)$; a > 0 - (c) Find the complex form of Fourier series for the function $f(x) = \cos \alpha x$, $x \in (-\pi, \pi)$ and 6 deduce $\cos ax = \frac{a \sinh a\pi}{\pi} \sum_{n=-\infty}^{\infty} \frac{(-1)^n}{a^2 + n^2} e^{inx}$ - 5 (a) Expand f(x) = 2 x, for 0 < x < 1 as half range cosine series and sketch f(x). - (b) Derive the Integral formula for partial sum of the fourier series. - (c) Prove that if f(x) be an absolutely integrable function of period 2π then, at every discontinuity point where the right and left hand derivatives exists, the Fourier series of fconverges to the value of $\frac{f(x+0)+f(x-0)}{2}$. OR - 5 (a) Find the Fourier transform of the function $f(x) = \begin{cases} 1 & |x| < 1 \\ 0 & |x| > 1 \end{cases}$ and hence evaluate the following (a) $\int_0^\infty \frac{\cos xt \sin t}{t} dt$ (b) $\int_0^\infty \frac{\sin t}{t} dt$ - (b) If function f(x) satisfied Dinchlet's condition, then drive the fourier sine integral formula. 7 - (c) Solve the Heat equation $u_t=u_{\chi\chi}$ subject to the following condition - 6 - (a) $u_x(0,t) = 0$ - (b) $u(x,0) = \begin{cases} x ; 0 \le x < 1 \\ 0; x \ge 1 \end{cases}$ (c) u(x,t) is bounded