

## **DPP-0216**

## M. A. (Sem. II) (Mathematics) Examination April/May - 2016

Paper: 406: P.D.E. & Fourier Analysis

| Time: | Hours] | [Total Marks: 100 |
|-------|--------|-------------------|
|       |        |                   |

## **Instructions:**

(1)



- (2) There are five questions in this question paper
- (3) Answer all questions
- (4) Figure to the right indicates marks of the questions
- 1 (a) Find the Orthogonal trajectories for the system of curves on a surface f(x, y, z) = 0. 7
  - (b) Explain any method to solve the set of equations  $\frac{dx}{P} = \frac{dy}{Q} = \frac{dz}{R}$  and Find the integral curves of the set of equations  $\frac{dx}{x^2(y^3-z^3)} = \frac{dy}{y^2(z^3-x^3)} = \frac{dz}{z^2(x^3-y^3)}$
  - (c) Find the equation of the integral surface of the differential equation  $(x^2 yz)p + (y^2 zx)q = (z^2 xy)$  which passes through the line x=1,y=0.
- 1 (a) Show that the necessary and sufficient condition that the pfaffian differential equation 7  $x \cdot dr = 0$  should be integrable is that  $x \cdot curl \ x = 0$ .
  - (b) Show that the equation xp yq = x,  $x^2p + q = xz$  are compatible and find their solution.
  - (c) Find the complete integral of x(1+y)p = y(1+x)q.
- 2 (a) Derive the condition for two differential equations f(x,y,z,p,q)=0 and g(x,y,z,p,q)=0 to be 7 compatible.
  - (b) Find the solution of  $z^2 = pqxy$  by Jacobi's method.
  - (c) Find the partial differential equation corresponding to the sphere  $x^2 + y^2 + (z c)^2 = a^2$  having center (0,0,c) with radius a.

6

6

- 2 (a) If  $(\alpha_r D + \beta_r D' + \gamma_r)^n$ ,  $(\alpha_r \neq 0)$  is a factor of F(D, D') and if the function 7  $\emptyset_{r_1}, \emptyset_{r_2}, \ldots, \emptyset_{r_n}$  an arbitrary then  $exp\left(-rac{\gamma_{r}x}{\alpha_{r}}
  ight)\sum_{s=1}^{n}x^{s-1}\,\emptyset_{r_s}\left(eta_{r_x}-lpha_{r_y}
  ight)$  a solution of
  - (b) Find the solution of the partial differential equation  $\frac{\partial^2 z}{\partial x^2} \frac{\partial^2 z}{\partial y^2} = x y$ . 7
  - (c) Find the equation of the system of surfaces which cut orthogonally the cones of the system  $x^2 + y^2 + z^2 = cxy$ .

Or

6

7

- (a) State and prove charpit's method.
  - (b) Find the integral curves of the set of equation (xz y)dx + (yz x)dy + $(1-z^2)dz=0.$
  - (c) Determine the equation yzdx + 2xzdy 3xydz = 0 is integrable and find the solution of which exists.

Or

- (a) Derive the complex Fourier series for the interval [c, c + 2l]. 7
  - (b) Find the Fourier series for the function  $f(x) = \left(\frac{\pi x}{2}\right)^2$ ;  $0 < x < 2\pi$ . 7
  - (c) If the Fourier series of f(x) over the interval [-l, l], then derive the Parseval's identity 6 for the given Fourier series in all possible cases.
- (A) Derive the Fourier series of a periodic odd function f(x) defined on [-p,p] with period 7
  - (b) Find the complex form of Fourier series for the function  $f(x) = e^{ax}$ ,  $x \in (-\pi, \pi)$  in the 7 form  $e^{ax} = \frac{\sinh a\pi}{\pi} \sum_{n=-\infty}^{\infty} (-1)^n \frac{a+in}{a^2+n^2} e^{inx}$ (c) Expand f(x) = 1 + x, for 0 < x < 1 as half range cosine series.
  - 6
- (a) 1) Define Orthonormal system. Prove that every orthogonal system of functions is 7 linearly independent system.
  - (b) Show that 7
    - (a)  $\mathcal{F}_c\{e^{-ax}\} = \sqrt{\frac{2}{\pi}} \left(\frac{a}{a^2 + k^2}\right)$ ; a > 0
    - (b)  $\mathcal{F}_s\{e^{-ax}\} = \sqrt{\frac{2}{\pi}} \left(\frac{k}{a^2 + k^2}\right)$ ; a > 0
  - (c) Find the complex form of Fourier series for the function  $f(x) = \cos \alpha x$ ,  $x \in (-\pi, \pi)$  and 6 deduce  $\cos ax = \frac{a \sinh a\pi}{\pi} \sum_{n=-\infty}^{\infty} \frac{(-1)^n}{a^2 + n^2} e^{inx}$
- 5 (a) Expand f(x) = 2 x, for 0 < x < 1 as half range cosine series and sketch f(x).
  - (b) Derive the Integral formula for partial sum of the fourier series.
  - (c) Prove that if f(x) be an absolutely integrable function of period  $2\pi$  then, at every discontinuity point where the right and left hand derivatives exists, the Fourier series of fconverges to the value of  $\frac{f(x+0)+f(x-0)}{2}$ .

OR

- 5 (a) Find the Fourier transform of the function  $f(x) = \begin{cases} 1 & |x| < 1 \\ 0 & |x| > 1 \end{cases}$  and hence evaluate the following

  (a)  $\int_0^\infty \frac{\cos xt \sin t}{t} dt$ (b)  $\int_0^\infty \frac{\sin t}{t} dt$ 

  - (b) If function f(x) satisfied Dinchlet's condition, then drive the fourier sine integral formula. 7
  - (c) Solve the Heat equation  $u_t=u_{\chi\chi}$  subject to the following condition
- 6

- (a)  $u_x(0,t) = 0$
- (b)  $u(x,0) = \begin{cases} x ; 0 \le x < 1 \\ 0; x \ge 1 \end{cases}$ (c) u(x,t) is bounded