
DEPARTMENT OF COMPUTER SCIENCE
VEER NARMAD SOUTH GUJARAT UNIVERSITY, SURAT

PROJECT REPORT

AS A PARTIAL REQUIREMENT

FOR THE DEGREE OF

MASTER OF COMPUTER APPLICATION

(M.C.A /6TH SEMESTER)

YEAR: 2020-21

JSON Web Token Authentication

GUIDED BY: SUBMITTED BY:

Mr. Rohit Gaur Harshita Bagaria

ORGANIZATION

Department of Computer Science, VNSGU

SURAT

Department of Computer Science

Veer Narmad South Gujarat University
Udhna Magdalla Road, Vesu, Surat – 395007 (Gujarat) INDIA

CERTIFICATE

Professor & Head
Dept. of Computer Science

SEMINAR OF MCA

Academic Year

Approved by:

(Examiners)

This is to certify that the seminar entitled

has been carried out by Mr. / Ms.

of M.C.A Semester VI Exam No. as a partial fulfillment

of the course, for the Academic Year 20 - 20

Date:

Internal Guide Name & Sign

JSON Web Token Authentication

Harshita Bagaria

3

20 21

Acknowledgement

In the present world of competition there is a race of existence in which those are having

will come forward succeed. Project is like a bridge between theoretical and practical

working. First of all, I would like to thank the supreme power the almighty God who is

obviously the one who has always guided me to work on the right path of life. Without

his grace this project could not become a reality. Next to him are my parents, whom I

am greatly indebted for me to brought up with love and encouragement to this stage. I

thank to Mr. Rohit Gaur , for providing me an opportunity to do the seminar and

giving us all support and guidance, which made me complete the project duly. I am

extremely thankful for providing such a nice support and guidance, although he had

busy schedule. I would like to express my deep sense of gratitude towards Department

of Computer Science, VNSGU, Surat.

Providing me this opportunity to implement the theoretical knowledge into practical

work as a part of seminar in Sixth semester curriculum. I am feeling oblige in taking

the opportunity to sincerely thanks my worthy teacher of Computer Application Mr.

Rohit Gaur.

At last I am thankful to all my teacher, friends and my colleagues who have been always

helping and encouraging me throughout the year .

INDEX

Sr. No. Description Page No.

1. What is JSON? 1

2. Why use JSON? 2

3. What is JSON Web Token? 6

4. When should you use JSON Web Token? 7

5. What is JSON Web Token Structure? 8

6. How do JSON Web Token Work? 11

7 Why should we use JSON Web Tokens? 14

8. How we use Json Web Token in AuthO? 16

9. Advantages 17

10. Disadvantages 18

11. Screenshots 19

12. Bibliography 23

JSON Web token authentication

1

JSON stands for JavaScript Object Notation.

JSON is a text format for storing and transporting data.

JSON is “self-describing” and easy to understand.

JSON is a lightweight data-interchange format. It is plain text written in JavaScript

object Notation. It is used to send data between computers. It is language independent.

Code for reading and generating JSON exists in many programming languages.

The JSON format was originally specified by Douglas Crockford.

What is JSON?

JSON Web token authentication

2

The JSON format is syntactically similar to the code for creating JavaScript objects.

Because of this, a JavaScript program can easily convert JSON data into JavaScript

objects.

Since the format is text only, JSON data can easily be sent between computers, and

used by any programming language.

JSON.parse() -

JavaScript has a built-in function for converting JSON strings into JavaScript objects.

JSON.stringify() -

JavaScript also has a built in function for converting an object into a JSON string.

You can receive pure text from a server and use it as a JavaScript object.

You can send a JavaScript object to a server in pure text format.

You can work with data as JavaScript objects, with no complicated parsing and

translations.

Storing Data

When storing data, the data has to be a certain format, and regardless of where you

choose to store it, text is always one of the legal formats.

JSON makes it possible to store JavaScript objects as text.

Why use JSON?

JSON Web token authentication

3

JSON Syntax Rules

JSON syntax is derived from JavaScript object notation syntax:

 Data is in name/ value pairs

 Data is sepearted by commas

 Curly braces hold objects

 Square brackets hold arrays

JSON Data – A Name and a Value

JSON data is written as name/ value pairs.

A name/ value pair consists of a filed name(in double quotes), followed by a colon,

followed by a value:

Example

“name”:”John”

Note : JSON name requires double quotes

JSON-Evaluates to JavaScript Objects

The JSON format is almost identical to JavaScript objects.

In JSON, keys must be strings, written with double quotes:

Example

JSON- {“name”:”John”}

In JavaScript, keys can be strings, numbers, or identifier names:

Example

JavaScript – {name:”John”}

JSON Web token authentication

4

JSON Values

In JSON, values must be one of the following data types:

 a string

 a number

 an object

 an array

 a boolean

 null

In JavaScript values can be all of the above, plus any other valid JavaScript

expression, including:

 a function

 a date

 undefined

In JSON, string values must be written with double quotes:

JavaScript Objects

JSON syntax is derived from JavaScript object notation, very little extra software is

needed to work with JSON within JavaScript.

With JavaScript you can create an object and assign data to it, like this:

Example:

person = {name:"John", age:31, city:"New York"};

You can access a JavaScript object like this:

JSON Web token authentication

5

Example:

person.name;

It can also be accessed like this:

Example:

person["name"];

Data can be modified like this:

Example:

person.name = "Gilbert";

It can also be modified like this:

Example:

person["name"] = "Gilbert";

JavaScript Arrays as JSON

The same way JavaScript objects can be written as JSON, JavaScript arrays can also be

written as JSON.

JSON Files

 The file type for JSON files is ".json"

 The MIME type for JSON text is "application/json"

JSON Web token authentication

6

JSON Web Token (JWT) is an open standard (RFC 7519) that defines a compact and

self-contained way for securely transmitting information between parties as a JSON

object. This information can be verified and trusted because it is digitally signed. JWTs

can be signed using a secret (with the HMAC algorithm) or a public/private key pair

using RSA or ECDSA.

Although JWTs can be encrypted to also provide secrecy between parties, we will focus

on signed tokens. Signed tokens can verify the integrity of the claims contained within

it, while encrypted tokens hide those claims from other parties. When tokens are signed

using public/private key pairs, the signature also certifies that only the party holding

the private key is the one that signed it.

What is JSON Web Token?

https://tools.ietf.org/html/rfc7519

JSON Web token authentication

7

Here are some scenarios where JSON Web Tokens are useful:

 Authorization: This is the most common scenario for using JWT. Once the user

is logged in, each subsequent request will include the JWT, allowing the user to

access routes, services, and resources that are permitted with that token. Single

Sign On is a feature that widely uses JWT nowadays, because of its small

overhead and its ability to be easily used across different domains.

 Information Exchange: JSON Web Tokens are a good way of securely

transmitting information between parties. Because JWTs can be signed—for

example, using public/private key pairs—you can be sure the senders are who

they say they are. Additionally, as the signature is calculated using the header

and the payload, you can also verify that the content hasn't been tampered with.

When should you use JSON Web?

?Token?

JSON Web token authentication

8

JSON Web Tokens consist of three parts separated by dots (.), which are

 : Header

 Payload

 Signature

JWT typically looks like the following-

xxxxxx,yyyyy,zzzzz

Header

The header typically consists of two parts: the type of the token, which is JWT, and

the signing algorithm being used, such as HMAC SHA256 or RSA.

Example :

{

 “alg” : “HS256”,

 “typ” : “JWT”

}

Then, this JSON is Base64Url encoded to form the first part of the JWT.

Payload

The second part of the token is the payload, which contains the claims. Claims are

statements about an entity (typically, the user) and additional data. There are three types

of claims: registered, public, and private claims.

 Registered claims: These are a set of predefined claims which are not

mandatory but recommended, to provide a set of useful, interoperable claims.

What is JSON Web Token structure?

JSON Web token authentication

9

Some of them are: iss (issuer), exp (expiration

time), sub (subject), aud (audience), and others.

 Public Claims : These can be defined at will by those using JWTs. But to avoid

collisions they should be defined in the IANA JSON Web Token Registry or be

defined as a URI that contains a collision resistant namespace.

 Private Claims : These are the custom claims created to share information

between parties that agree on using them and are

neither registered or public claims.

Example :

{

 “sub” : “1234567890”,

 “name” : “John Doe”

 “admin” : true

}

The payload is then Base64Url encoded to form the second part of the JSON Web

Token.

Signature

To create the signature part you have to take the encoded header, the encoded payload,

a secret, the algorithm specified in the header, and sign that.

Example : if you want to use the HMAC SHA256 algorithm, the signature will be

created in the following way:

HMACSHA256(

 base64UrlEncode(header) + “.” +

https://tools.ietf.org/html/rfc7519#section-4.1
https://www.iana.org/assignments/jwt/jwt.xhtml

JSON Web token authentication

10

 base64UrlEncode(payload),

 secret)

The signature is used to verify the message wasn't changed along the way, and, in the

case of tokens signed with a private key, it can also verify that the sender of the JWT is

who it says it is.

Putting all together

The output is three Base64-URL strings separated by dots that can be easily passed in

HTML and HTTP environments, while being more compact when compared to XML-

based standards such as SAML.

The following shows a JWT that has the previous header and payload encoded, and it

is signed with a secret.

If you want to play with JWT and put these concepts into practice, you can use jwt.io

Debugger to decode, verify, and generate JWTs.

https://jwt.io/#debugger-io
https://jwt.io/#debugger-io

JSON Web token authentication

11

In authentication, when the user successfully logs in using their credentials, a JSON

Web Token will be returned. Since tokens are credentials, great care must be taken to

prevent security issues. In general, you should not keep tokens longer than required.

You also should not store sensitive session data in browser storage due to lack of

security.

Whenever the user wants to access a protected route or resource, the user agent should

send the JWT, typically in the Authorization header using the Bearer schema. The

content of the header should look like the following:

How do JSON Web Token work?

https://cheatsheetseries.owasp.org/cheatsheets/HTML5_Security_Cheat_Sheet.html#local-storage
https://cheatsheetseries.owasp.org/cheatsheets/HTML5_Security_Cheat_Sheet.html#local-storage

JSON Web token authentication

12

Authorization: Bearer <token>

This can be, in certain cases, a stateless authorization mechanism. The server's

protected routes will check for a valid JWT in the Authorization header, and if it's

present, the user will be allowed to access protected resources. If the JWT contains

the necessary data, the need to query the database for certain operations may be

reduced, though this may not always be the case.

If the token is sent in the Authorization header, Cross-Origin Resource Sharing (CORS)

won't be an issue as it doesn't use cookies.

The following diagram shows how a JWT is obtained and used to access APIs or

resources:

1. The application or client requests authorization to the authorization server. This

is performed through one of the different authorization flows. For example, a

typical OpenID Connect compliant web application will go through

the /oauth/authorize endpoint using the authorization code flow.

2. When the authorization is granted, the authorization server returns an access

token to the application.

http://openid.net/connect/
http://openid.net/specs/openid-connect-core-1_0.html#CodeFlowAuth

JSON Web token authentication

13

3. The application uses the access token to access a protected resource (like an

API).

JSON Web token authentication

14

The benefits of JSON Web Tokens (JWT) when compared to Simple Web Tokens

(SWT) and Security Assertion Markup Language Tokens (SAML).

As JSON is less verbose than XML, when it is encoded its size is also smaller, making

JWT more compact than SAML. This makes JWT a good choice to be passed in HTML

and HTTP environments.

Security-wise, SWT can only be symmetrically signed by a shared secret using the

HMAC algorithm. However, JWT and SAML tokens can use a public/private key pair

in the form of a X.509 certificate for signing. Signing XML with XML Digital

Signature without introducing obscure security holes is very difficult when compared

to the simplicity of signing JSON.

JSON parsers are common in most programming languages because they map directly

to objects. Conversely, XML doesn't have a natural document-to-object mapping. This

makes it easier to work with JWT than SAML assertions.

Regarding usage, JWT is used at Internet scale. This highlights the ease of client-side

processing of the JSON Web token on multiple platforms, especially mobile.

Why should we use JSON Web Token?

TokenTokens?

JSON Web token authentication

15

JSON Web token authentication

16

In Auth0, we issue JWTs as a result of the authentication process. When the user logs

in using Auth0, a JWT is created, signed, and sent to the user. Auth0 supports signing

JWT with both HMAC and RSA algorithms. This token will be then used to

authenticate and authorize with APIs which will grant access to their protected routes

and resources.

We also use JWTs to perform authentication and authorization in Auth0’s API v2,

replacing the traditional usage of regular opaque API keys. Regarding authorization,

JSON Web Tokens allow granular security, that is the ability to specify a particular set

of permissions in the token, which improves debuggability.

How we use JSON Web Tokens in AuthO?

?AuthO? AuthO?

JSON Web token authentication

17

 No Session to Manage (stateless): The JWT is a self contained token which

has authetication information, expire time information, and other user defined

claims digitally signed.

 Portable: A single token can be used with multiple backends.

 No Cookies Required, So It's Very Mobile Friendly.

 Good Performance: It reduces the network round trip time.

 Decoupled/Decentralized: The token can be generated anywhere.

Authentication can happen on

the resource server, or easily seperated into its own server.

Advantages

JSON Web token authentication

18

 Compromised Secret Key : The best and the worst thing about JWT is that it

relies on just one Key. Consider that the Key is leaked by a careless or a

rogue developer/administrator, the whole system is compromised!

 Cannot push Messages to clients (Identifying clients from server) : As we

have no record about the logged-in clients on the DB end, we cannot push

messages to all the clients.

 Crypto-algo can be deprecated: JWT relies completely on the Signing

algorithm. Now, though it is not frequent, but in the past many

Encryption/Signing algorithms have been deprecated.

 Data Overhead : The size of the JWT token will be more than that of a

normal Session token. The more data you add in the JWT token, the longer it

gets linearly. Remember, each request needs the token in it for request

verification. So say, a 1 KB JWT token implies each request will have 1KB

over-head upload which is really bad in cases of low speed net connectivity.

Disadvantages

JSON Web token authentication

19

First we have to login with valid credentials.

If invalid credentials then you will not be able to login.

Screenshots

JSON Web token authentication

20

After successful login you will be enter the details in the field.

JSON Web token authentication

21

After filling up the data’s you will get the message for successful inserting.

JSON Web token authentication

22

Here, you can see all the inserted data in the table.

JSON Web token authentication

23

 https://jwt.io/introduction

Bibliography

	Header
	Putting all together

